Introduction to Complex Analysis

By: Dr. Pragya Mishra Assistant Professor Mathematics Pt. Deen Dayal Upadhaya Govt. P. G. College, Lucknow

Functions of a Complex Variable I

Cauchy-Riemann conditions

Complex algebra

<u>Complex number:</u> z = x + iy (both x and y are real, $i = \sqrt{-1}$.) **Complex algebra:** $z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$ (Anologous to 2d vectors.) $z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1) \quad (\Rightarrow cz = c(x + iy) = cx + icy) \quad (\Rightarrow z_1 - z_2)$ <u>Complex conjugation</u>: $z^* = (x+iy)^* = x-iy$ $\Rightarrow zz^* = (x+iy)(x-iy) = x^2 + y^2$ <u>Polar representation:</u> $z = x + iy = r(\cos \theta + i \sin \theta) = re^{i\theta}$ Modulus (magnitude): $|z| = \sqrt{zz^*} = r = \sqrt{x^2 + y^2} \implies |z_1 z_2| = |z_1| |z_2|$ <u>Argument (phase)</u>: $\arg(z) = \theta = \arctan\left(\frac{y}{x}\right)$ (+ π if z is in the 2nd or 3rd quadrants.) $\Rightarrow \arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$

Functions of a complex variable:

All elementary functions of real variables may be extended into the complex plane.

Example:
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!} \rightarrow e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

A complex function can be resolved into its *real part* and *imaginary part*:

f(z) = u(x, y) + iv(x, y)Examples : $z^2 = (x + iy)^2 = (x^2 + y^2) + i2xy$ $\frac{1}{z} = \frac{1}{x + iy} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2}$

Multi-valued functions and branch cuts:

Example 1: $\ln z = \ln(re^{i\theta}) = \ln[re^{i(\theta+2n\pi)}] = \ln r + i(\theta+2n\pi) = u + iv$

To remove the ambiguity, we can limit all phases to $(-\pi,\pi)$. $\theta = -\pi$ is the *branch cut*. $\ln z$ with n = 0 is the *principle value*.

Example 2:
$$z^{1/2} = (re^{i\theta})^{1/2} = [re^{i(\theta + 2n\pi)}]^{1/2} = r^{1/2}e^{i(\theta + 2n\pi)/2}$$

We can let z move on 2 *Riemann sheets* so that $f(z) = (re^{i\theta})^{1/2}$ is single valued everywhere.

Cauchy-Riemann conditions

<u>Analytic functions</u>: If f(z) is differentiable at $z = z_0$ and within the neighborhood of $z=z_0$, f(z) is said to be **analytic** at $z = z_0$. A function that is analytic in the whole complex plane is called an *entire function*.

Cauchy-Riemann conditions for differentiability

$$f'(z) = \frac{df}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta f(z)}{\Delta z}$$

In order to let *f* be differentiable, f'(z) must be the same in any direction of Δz . Particularly, it is necessary that

For
$$\Delta z = \Delta x$$
, $f'(z) = \lim_{\Delta x \to 0} \frac{\Delta u + i\Delta v}{\Delta x} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$.
For $\Delta z = i\Delta y$, $f'(z) = \lim_{\Delta y \to 0} \frac{\Delta u + i\Delta v}{i\Delta y} = -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$.

Equating them we have

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 Cauchy-Riemann conditions

Conversely, if the Cauchy-Riemann conditions are satisfied, f(z) is differentiable:

$$\frac{df}{dz} = \lim_{\Delta z \to 0} \frac{\Delta f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) \Delta x + \left(\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right) \Delta y}{\Delta x + i\Delta y} = \lim_{\Delta z \to 0} \frac{\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) \Delta x + \left(-\frac{\partial v}{\partial x} + i\frac{\partial u}{\partial x}\right) \Delta y}{\Delta x + i\Delta y}$$
$$= \lim_{\Delta z \to 0} \frac{\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) (\Delta x + i\Delta y)}{\Delta x + i\Delta y} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}, \quad \text{and} = \frac{1}{i} \left(\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right).$$

More about Cauchy-Riemann conditions:

1) It is a very strong restraint to functions of a complex variable.

2)
$$\frac{df}{dz} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} = \frac{\partial u}{\partial (iy)} + i\frac{\partial v}{\partial (iy)}.$$

3)
$$\frac{\partial u}{\partial x}\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial y} = 0 \Rightarrow \nabla u \cdot \nabla v = 0 \Rightarrow \nabla u \perp \nabla v \Rightarrow u = c_1 \perp v = c_2$$

4) Equivalent to
$$\frac{\partial f}{\partial z^*} = 0$$
, so that $f(z,z^*)$ only depends on z :

$$\frac{\partial f}{\partial z^*} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial z^*} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial z^*} = \frac{\partial f}{\partial x}\frac{1}{2} + \frac{\partial f}{\partial y}\left(-\frac{1}{2i}\right) = 0 \Rightarrow \frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y} = 0 \Rightarrow \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right) = 0 \Rightarrow \cdots$$

e.g., $f = x - iy$ is every where continuous but not analytic.

Reading: General search for Cauchy-Riemann conditions:

Our Cauchy-Riemann conditions were derived by requiring f'(z) be the same when z changes along x or y directions. How about other directions? Here I do a general search for the conditions of differentiability.

$$f'(z) = \frac{df}{dz} = \frac{du + idv}{dx + idy} = \frac{\left(\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy\right) + i\left(\frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy\right)}{dx + idy} = \frac{\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\frac{dy}{dx}\right) + i\left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}\frac{dy}{dx}\right)}{1 + i\frac{dy}{dx}}$$

Now let $\frac{dy}{dx} = p$, the direction of the change of z. We want to find the condition under which

$$f'(z)$$
 does not depend on p .

$$\frac{df'(z)}{dp} = 0 = \frac{d}{dp} \frac{\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}p\right) + i\left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}p\right)}{1 + ip} = \frac{\left(\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right)(1 + ip) - i\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}p\right) + \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}p\right)}{(1 + ip)^2}$$

 $= \frac{\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}\right)}{\left(1 + ip\right)^2} \Longrightarrow \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} & \text{That is, if we require } f'(z) \text{ be the same at all directions,} \\ we get the same Cauchy - Riemann conditions.} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial y} \end{cases}$

Cauchy's theorem

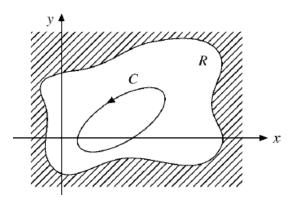
Cauchy's integral theorem

Contour integral:

$$\int_{z_1}^{z_2} f(z) dz = \int_C (u + iv) (dx + idy) = \int_C (u dx - v dy) + i \int_C (v dx + u dy)$$

<u>Cauchy's integral theorem</u>: If f(z) is analytic in a simply connected region R, [and f'(z) is continuous throughout this region,] then for any closed path C in R, the contour integral of f(z) around C is zero: $\oint_C f(z)dz = 0$

Proof using Stokes' theorem:
$$\oint_{C} \mathbf{V} \cdot d\mathbf{\lambda} = \iint_{S} \nabla \times \mathbf{V} \cdot d\mathbf{\sigma}$$
$$\oint_{C} \left(V_{x} dx + V_{y} dy \right) = \iint_{S} \left(\frac{\partial V_{y}}{\partial x} - \frac{\partial V_{x}}{\partial y} \right) dx dy$$
$$\oint_{C} f(z) dz = \oint_{C} (u dx - v dy) + i \oint_{C} (v dx + u dy)$$
$$= \iint_{S} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy + i \iint_{S} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy$$
$$= 0$$



<u>Cauchy-Goursat proof</u>: The continuity of f'(z) is not necessary.

Corollary: An open contour integral for an analytic function is independent of the path, if there is no singular points between the paths.

$$\int_{z_1}^{z_2} f(z) dz = F(z_2) - F(z_1) = -\int_{z_2}^{z_1} f(z) dz$$

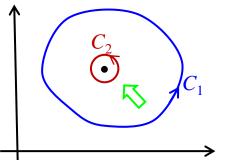
Contour deformation theorem:

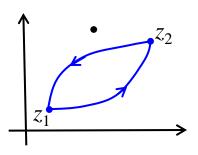
A contour of a complex integral can be arbitrarily deformed <u>through an analytic region</u> without changing the integral.

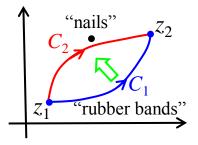
It applies to both open and closed contours.
 One can even split closed contours.
 Proof: Deform the contour bit by bit.

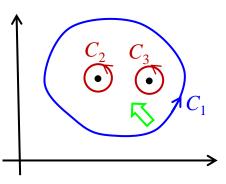
Examples:

Cauchy's integral theorem.
 (Let the contour shrink to a point.)
 Cauchy's integral formula.
 (Let the contour shrink to a small circle.)









Cauchy's integral formula

Cauchy's integral formula:

If f(z) is analytic within and on a closed contour C, then for any point z_0 within C,

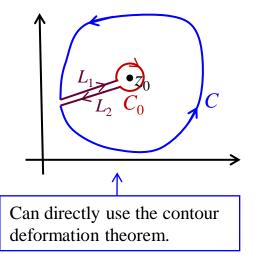
$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

Proof :

$$\oint_{C} \frac{f(z)}{z - z_{0}} dz + \oint_{L_{1}} \frac{f(z)}{z - z_{0}} dz + \oint_{C_{0}} \frac{f(z)}{z - z_{0}} dz + \oint_{L_{2}} \frac{f(z)}{z - z_{0}} dz = 0$$

$$\oint_{C} \frac{f(z)}{z - z_{0}} dz = -\oint_{C_{0}} \frac{f(z)}{z - z_{0}} dz = -\int_{2\pi}^{0} \frac{f(z_{0} + re^{i\theta})}{re^{i\theta}} rie^{i\theta} d\theta \quad (\text{Let } r \to 0)$$

$$= 2\pi i f(z_{0})$$



Derivatives of
$$f(z)$$
: $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$

Corollary: If a function is analytic, then its derivatives of all orders exist. Corollary: If a function is analytic, then it can be expanded in Taylor series.

<u>**Cauchy's inequality:**</u> If $f(z) = \sum a_n z^n$ is analytic and bounded, $|f(z)|_{|z|=r} \le M$, then $|a_n|r^n \le M$. (That is, a_n is bounded.)

Proof:
$$f^{(n)}(0) = n! a_n = \frac{n!}{2\pi i} \oint_{|z|=r} \frac{f(z)}{z^{n+1}} dz \Longrightarrow |a_n| = \frac{1}{2\pi} \left| \oint_{|z|=r} \frac{f(z)}{z^{n+1}} dz \right| \le \frac{M}{r^n} \Longrightarrow |a_n| r^n \le M$$

Liouville's theorem: If a function is analytic and bounded in the entire complex plane, then this function is a constant.

Proof:
$$|a_n| \le \frac{M}{r^n}$$
, let $r \to \infty$, then $a_n = 0$ for $n > 0$. $f(z) = a_0$.

Fundamental theorem of algebra: $P(z) = \sum_{i=0}^{n} a_i z^i \quad (n > 0, a_n \neq 0)$ has *n* roots.

Suppose P(z) has no roots, then 1/P(z) is analytic and bounded as $|z| \rightarrow \infty$. Then P(z) is constant. That is nonsense. Therefore P(z) has at least one root we can divide out.

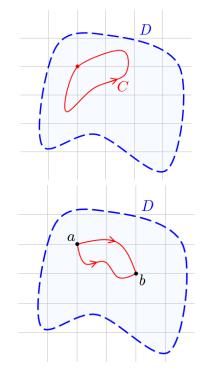
Morera's theorem: If f(z) is continuous and $\oint_C f(z)dz = 0$ for every closed contour within a simply connected region, then f(z) is analytic in this region.

Proof :

$$\oint_C f(z)dz = 0 \Longrightarrow \int_{z_1}^{z_2} f(z)dz = F(z_2) - F(z_1) \Longrightarrow F'(z) = f(z)$$
$$\Longrightarrow F(z) \text{ is analytic}$$

 \Rightarrow F'(z) = f(z) is analytic

Why
$$\int_{z_1}^{z_2} f(z)dz = F(z_2) - F(z_1)$$
?
Let $\int_{z_1}^{z_2} f(z)dz = G(z_1, z_2)$, then
 $G(z_1, z_2) = G(z_1, 0) + G(0, z_2)$
 $= -G(0, z_1) + G(0, z_2) = -F(z_1) + F(z_2)$

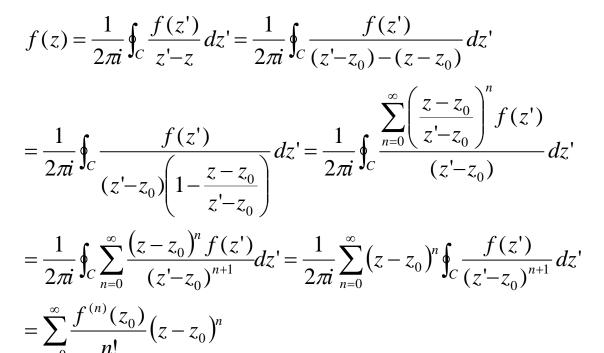


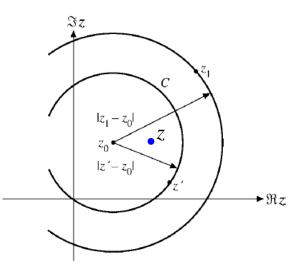
Analytic continuation

Laurent expansion

Taylor expansion for functions of a complex variable:

Expanding an analytic function f(z) about $z = z_0$, where z_1 is the nearest singular point.





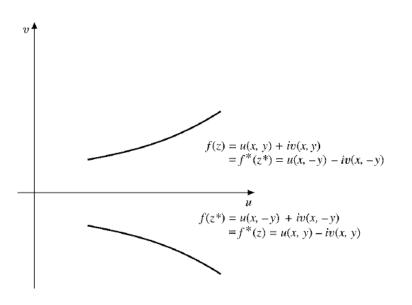
Schwarz's reflection principle:

If f(z) is 1) analytic over a region including the real axis, and 2) real when z is real, then $f^*(z) = f(z^*)$.

Proof:
$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (z - x_0)^n$$

 $\Rightarrow f^*(z) = f(z^*)$

Examples: most of the elementary functions.



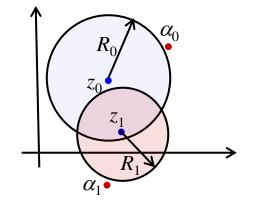
<u>Analytic continuation</u>: Suppose f(z) is analytic around $z = z_0$, we can expand it about $z = z_0$ in a Taylor series:

$$f(z) = \sum_{m=0}^{\infty} \frac{\check{f}^{(m)}(z_0)}{m!} (z - z_0)^m$$

This series converges inside a circle with a radius of convergence $R_0 = |\alpha_0 - z_0|$, where α_0 is the nearest singularity from $z = z_0$.

We can also expand f(z) about another point $z = z_1$ within

the circle
$$R_0$$
: $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_1)}{n!} (z - z_1)^n$.



In general, the new circle has a radius of convergence $R_1 = |\alpha_1 - z_1|$ and contains points not within the first circle.

From the first expansion, $f^{(n)}(z_1) = \sum_{m=n}^{\infty} \frac{f^{(m)}(z_0)}{(m-n)!} (z_1 - z_0)^{m-n}$ Plug into the second expansion, $f(z) = \sum_{n=0,m=n}^{\infty} \frac{f^{(m)}(z_0)(z_1 - z_0)^{m-n}}{n!(m-n)!} (z - z_1)^n$

Consequences:

1) f(z) can be analytically continued over the complex plane, excluding singularities. 2) If f(z) is analytic, its values at one region determines its values everywhere.

Laurent expansion

Laurent expansion

Problem: Expanding a function f(z) that is analytic in an annular region (between *r* and *R*).

$$f(z) = \frac{1}{2\pi i} \oint_{C_1+L_1+\tilde{C}_2+L_2} \frac{f(z')dz'}{z'-z}$$

$$= \frac{1}{2\pi i} \oint_{C_1} \frac{f(z')dz'}{z'-z} - \frac{1}{2\pi i} \oint_{C_2} \frac{f(z')dz'}{z'-z}$$

$$= \frac{1}{2\pi i} \oint_{C_1} \frac{f(z')dz'}{(z'-z_0) - (z-z_0)} - \frac{1}{2\pi i} \oint_{C_2} \frac{f(z')dz'}{(z'-z_0) - (z-z_0)}$$

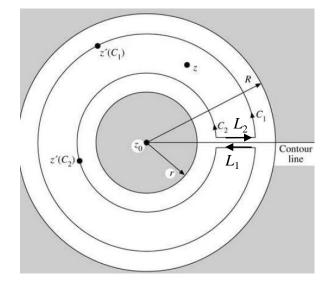
$$= \frac{1}{2\pi i} \oint_{C_1} \frac{f(z')dz'}{(z'-z_0) \left(1 - \frac{z-z_0}{z'-z_0}\right)} + \frac{1}{2\pi i} \oint_{C_2} \frac{f(z')dz'}{(z-z_0) \left(1 - \frac{z'-z_0}{z-z_0}\right)}$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z-z_0)^n \oint_{C_1} \frac{f(z')dz'}{(z'-z_0)^{n+1}} + \frac{1}{2\pi i} \sum_{m=0}^{\infty} \frac{1}{(z-z_0)^{m+1}} \oint_{C_2} (z'-z_0)^m f(z')dz'$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z-z_0)^n \oint_{C_1} \frac{f(z')dz'}{(z'-z_0)^{n+1}} + \frac{1}{2\pi i} \sum_{m=1}^{\infty} \frac{1}{(z-z_0)^m} \oint_{C_2} (z'-z_0)^{m-1} f(z')dz'$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z-z_0)^n \oint_{C_1} \frac{f(z')dz'}{(z'-z_0)^{n+1}} + \frac{1}{2\pi i} \sum_{m=1}^{\infty} (z-z_0)^n \oint_{C_2} \frac{f(z')dz'}{(z'-z_0)^{n+1}}$$

 $=\frac{1}{2\pi i}\sum_{n=-\infty}^{\infty}(z-z_0)^n\oint_C\frac{f(z')dz'}{(z'-z_0)^{n+1}}$ C is any contour that encloses z_0 and lies between r and R (deformation theorem).



15

Laurent expansion:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n, \quad a_n = \frac{1}{2\pi i} \oint_C \frac{f(z') dz'}{(z' - z_0)^{n+1}}$$

- Singular points of the integrand.
 For *n* < 0, the singular points are determined by *f*(*z*). For *n* ≥0, the singular points are determined by both *f*(*z*) and 1/(*z*'-*z*₀)^{*n*+1}.
- 2) If f(z) is *analytic* inside C, then the Laurent series reduces to a Taylor series:

$$a_n = \begin{cases} \frac{f^{(n)}(z_0)}{n!}, & n \ge 0, \\ 0, & n < 0. \end{cases}$$

3) Although a_n has a general contour integral form, In most times we need to use straight forward complex algebra to find a_n .

Laurent expansion: Examples

Example 1: Expand
$$f(z) = \frac{z^3}{(z-1)^2}$$
 about $z_0 = 1$.

$$\frac{z^3}{(z-1)^2} = \frac{[(z-1)+1]^3}{(z-1)^2} = \frac{(z-1)^3 + 3(z-1)^2 + 3(z-1) + 1}{(z-1)^2} = \frac{1}{(z-1)^2} + \frac{3}{z-1} + 3 + (z-1)$$

Example 2: Expand
$$f(z) = \frac{1}{z^2 + 1}$$
 about $z_0 = i$.

$$f(z) = \frac{1}{z^2 + 1} = \frac{1}{2i} \left(\frac{1}{z - i} - \frac{1}{z + i} \right) = \frac{1}{2i} \left(\frac{1}{z - i} - \frac{1}{2i + z - i} \right)$$

$$= \frac{1}{2i} \left(\frac{1}{z - i} - \frac{1}{2i} \cdot \frac{1}{1 + \frac{z - i}{2i}} \right) = \frac{1}{2i} \frac{1}{z - i} - \frac{1}{(2i)^2} \sum_{n=0}^{\infty} \left(-\frac{1}{2i} \right)^n (z - i)^n$$

$$= -\frac{i}{2} \frac{1}{z - i} + \frac{1}{4} + \frac{i}{8} (z - i) + \cdots$$

Branch points and branch cuts

Singularities

<u>Poles</u>: In a Laurent expansion $f(z) = \sum_{m=-\infty}^{\infty} a_m (z - z_0)^m$, if $a_m = 0$ for m < -n < 0 and $a_{-n} \neq 0$,

then z_0 is said to be a *pole of order n*. A pole of order 1 is called a *simple pole*.

A pole of infinite order (when expanded about z_0) is called an *essential singularity*.

The behavior of a function f(z) at infinity is defined using the behavior of f(1/t) at t = 0.

Examples:

$$1)\frac{1}{z^{2}+1} = \frac{1}{(z-i)(z+i)} = \frac{1}{2i} \left(\frac{1}{z-i} - \frac{1}{z+i} \right) = \frac{1}{2i} \left[-\frac{1}{z+i} - \frac{1}{2i-(z+i)} \right] = -\frac{1}{2i} \frac{1}{z+i} + \frac{1}{4} \frac{1}{1-(z+i)/2i}$$
$$= -\frac{1}{2i} \frac{1}{z+i} + \frac{1}{4} \left[1 + \frac{z+i}{2i} + \left(\frac{z+i}{2i} \right)^{2} + \cdots \right] \text{ has a single pole at } z = -i.$$
$$2) \sin z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n+1}}{(2n+1)!}, \ \sin \frac{1}{t} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \frac{1}{t^{2n+1}}$$

sinz thus has an essential singularity at infinity.

3) $z^2 + 1$ has a pole of order 2 at infinity.

Branch points and branch cuts:

Branch point: A point z_0 around which a function f(z) is discontinuous after going a small circuit. E.g., $z_0 = 1$ for $\sqrt{z-1}$, $z_0 = 0$ for $\ln z$.

Branch cut: A curve drawn in the complex plane such that if a path is not allowed to cross this curve, a multi-valued function along the path will be single valued. Branch cuts are *usually* taken between pairs of branch points. E.g., for $\sqrt{z-1}$, the curve connects z=1 and z = 0 can serve as a branch cut.

Examples of branch points and branch cuts:

1.
$$f(z) = z^a = r^a (\cos a\theta + i \sin a\theta)$$

If *a* is a rational number, a = p/q, then circling the branch point z = 0 q times will bring f(z) back to its original value. This branch point is said to be *algebraic*, and *q* is called the order of the branch point.

If *a* is an irrational number, there will be no number of turns that can bring f(z) back to its original value. The branch point is said to be *logarithmic*.

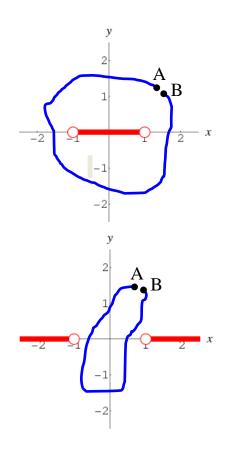
2. $f(z) = \sqrt{(z-1)(z+1)}$

We can choose a branch cut from z = -1 to z = 1 (or any curve connecting these two points). The function will be single-valued, because both points will be circled.

Alternatively, we can choose a branch cut which connects each branch point to infinity. The function will be single-valued, because neither points will be circled.

It is notable that these two choices result in different functions. E.g., if $f(i) = \sqrt{2}i$, then

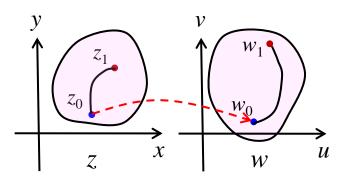
 $f(-i) = -\sqrt{2}i$ for the first choice and $f(-i) = \sqrt{2}i$ for the second choice.



Mapping

Mapping

Mapping: A complex function w(z) = u(x, y) + iv(x, y) can be thought of as describing a mapping from the complex *z*-plane into the complex *w*-plane. In general, a point in the *z*-plane is mapped into a point in the *w*-plane. A curve in the *z*-plane is mapped into a curve in the *w*-plane. An area in the *z*-plane is mapped into an area in the *w*-plane.



Examples of mapping:

Translation:

 $w = z + z_0$

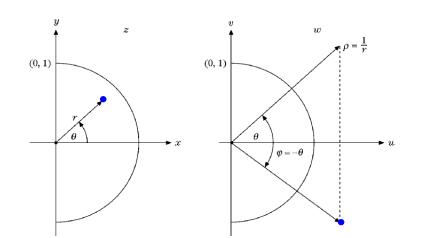
Rotation:

 $w = zz_0$, or

$$\rho e^{i\varphi} = r e^{i\theta} \cdot r_0 e^{i\theta_0} \Longrightarrow \begin{cases} \rho = r \cdot r_0 \\ \varphi = \theta + \theta_0 \end{cases}$$

Inversion:

$$w = \frac{1}{z}$$
, or
 $\rho e^{i\varphi} = \frac{1}{re^{i\theta}} \Longrightarrow \begin{cases} \rho = \frac{1}{r} \\ \varphi = -\theta \end{cases}$



In Cartesian coordinates:

 $w = \frac{1}{z} \Rightarrow u + iv = \frac{1}{x + iy} \Rightarrow \begin{cases} u = \frac{x}{x^2 + y^2}, \\ v = -\frac{y}{x^2 + y^2}, \\ v = -\frac{y}{u^2 + v^2} \end{cases}, \begin{cases} x = \frac{u}{u^2 + v^2}, \\ y = -\frac{v}{u^2 + v^2}, \\ y = -\frac{v}{u^$

 $(0, -\frac{1}{2c_1})$

Conformal mapping

<u>Conformal mapping</u>: The function w(z) is said to be conformal at z_0 if it preserves the angle between any two curves through z_0 .

If w(z) is analytic and $w'(z_0) \oplus 0$, then w(z) is conformal at z_0 .

Proof: Since w(z) is analytic and $w'(z_0) \oplus 0$, we can expand w(z) around $z = z_0$ in a Taylor series:

$$w = w(z_0) + w'(z_0)(z - z_0) + \frac{1}{2}w''(z_0)(z - z_0)^2 + \cdots$$

$$\lim_{z-z_0\to 0}\frac{w-w_0}{z-z_0}=w'(z_0), \text{ or } w-w_0\approx w'(z_0)(z-z_0).$$

$$w - w_0 = Ae^{i\alpha}(z - z_0) \Longrightarrow \varphi = \alpha + \theta \Longrightarrow \varphi_2 - \varphi_1 = \theta_2 - \theta_1.$$

- 1) At any point where w(z) is conformal, the mapping consists of a rotation and a dilation.
- 2) The local amount of rotation and dilation varies from point to point. Therefore a straight line is usually mapped into a curve.
- 3) A curvilinear orthogonal coordinate system is mapped to another curvilinear orthogonal coordinate system .

What happens if $w'(z_0) = 0$?

Suppose $w^{(n)}(z_0)$ is the first non-vanishing derivative at z_0 .

$$w - w_0 \approx \frac{w^{(n)}(z_0)}{n!} (z - z_0)^n \Longrightarrow \rho e^{i\varphi} = \frac{1}{n!} B e^{i\beta} (r e^{i\theta})^n \Longrightarrow \begin{cases} \rho = \frac{Br^n}{n!} \\ \varphi = n\theta + \beta \end{cases}$$

This means that at $z = z_0$ the angle between any two curves is magnified by a factor *n* and then rotated by β .